2011-09-01
This review by Onur Güntürkün describes a case of convergence in the evolution of brain and cognition. Both mammals and birds can organize their behavior flexibly over time and evolved similar cognitive skills. However, mammals and birds display vast differences in the organization of their forebrains with mammals having a laminated cortex. The avian forebrain displays no such lamination; hence, lamination does not seem to be a requirement for higher cognitive functions. In mammals, executive functions are associated with the prefrontal cortex. The corresponding structure in birds is the nidopallium caudolaterale. Anatomic, neurochemical, electrophysiologic and behavioral studies show these structures to be highly similar, but not homologous. Thus, despite the presence (mammals) or the absence (birds) of a laminated forebrain, 'prefrontal' areas in mammals and birds converged over evolutionary time into a highly similar neural architecture. The neuroarchitectonic degrees of freedom to create different neural architectures that generate identical prefrontal functions seem to be very limited.
This review by Onur Güntürkün describes a case of convergence in the evolution of brain and cognition. Both mammals and birds can organize their behavior flexibly over time and evolved similar cognitive skills. However, mammals and birds display vast differences in the organization of their forebrains with mammals having a laminated cortex. The avian forebrain displays no such lamination; hence, lamination does not seem to be a requirement for higher cognitive functions. In mammals, executive functions are associated with the prefrontal cortex. The corresponding structure in birds is the nidopallium caudolaterale. Anatomic, neurochemical, electrophysiologic and behavioral studies show these structures to be highly similar, but not homologous. Thus, despite the presence (mammals) or the absence (birds) of a laminated forebrain, 'prefrontal' areas in mammals and birds converged over evolutionary time into a highly similar neural architecture. The neuroarchitectonic degrees of freedom to create different neural architectures that generate identical prefrontal functions seem to be very limited.