TO TOP

The trigeminal system of the elephant brain

2022-01-20

Elephant Tuff22

In August 2021, our PhD student John Tuff visited the lab of Prof Michael Brecht at the Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin as part of his Max Planck School of Cognition PhD program. In this time, he and the team from Berlin investigated the trigeminal system of the elephant brain and compared it with other sensory nerves as well as the spinal cord. 

In August 2021, our PhD student John Tuff visited the lab of Prof Michael Brecht at the Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin as part of his Max Planck School of Cognition PhD program. In this time, he and the team from Berlin investigated the trigeminal system of the elephant brain and compared it with other sensory nerves as well as the spinal cord. They found the trigeminal ganglia to be huge, larger than a macaque monkey brain, and the maxillary branches, which lead down to the trunk, were thicker than the spinal cord, indicating that the connections to the trunk are more substantial than the nerves to the rest of the body. The infraorbital nerve, which runs through the trunk, was several times as thick as other sensory nerves. These findings suggest that while elephants are mainly known for their excellent sense of hearing, it is possibly underestimated how much these animals rely on their trunks for sensory input.


Purkart, L., Tuff, J. M., Shah, M., Kaufmann, L. V., Altringer, C., Maier, E., Schneeweiß, U., Tunckol, E., Eigen, L., Holtze, S., Fritsch, G., Hildebrandt, T. & Brecht, M. (2022). Trigeminal ganglion and sensory nerves suggest tactile specialization of elephants. Current Biology. https://doi.org/10.1016/j.cub.2021.12.051

Elephant Tuff22

In August 2021, our PhD student John Tuff visited the lab of Prof Michael Brecht at the Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin as part of his Max Planck School of Cognition PhD program. In this time, he and the team from Berlin investigated the trigeminal system of the elephant brain and compared it with other sensory nerves as well as the spinal cord. 

In August 2021, our PhD student John Tuff visited the lab of Prof Michael Brecht at the Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin as part of his Max Planck School of Cognition PhD program. In this time, he and the team from Berlin investigated the trigeminal system of the elephant brain and compared it with other sensory nerves as well as the spinal cord. They found the trigeminal ganglia to be huge, larger than a macaque monkey brain, and the maxillary branches, which lead down to the trunk, were thicker than the spinal cord, indicating that the connections to the trunk are more substantial than the nerves to the rest of the body. The infraorbital nerve, which runs through the trunk, was several times as thick as other sensory nerves. These findings suggest that while elephants are mainly known for their excellent sense of hearing, it is possibly underestimated how much these animals rely on their trunks for sensory input.


Purkart, L., Tuff, J. M., Shah, M., Kaufmann, L. V., Altringer, C., Maier, E., Schneeweiß, U., Tunckol, E., Eigen, L., Holtze, S., Fritsch, G., Hildebrandt, T. & Brecht, M. (2022). Trigeminal ganglion and sensory nerves suggest tactile specialization of elephants. Current Biology. https://doi.org/10.1016/j.cub.2021.12.051