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Functional MRI of imprinting memory in
awake newborn domestic chicks

Check for updates
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Onur Güntürkün 1,5 & Giorgio Vallortigara 2

Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early
learning and its long-term impact on behaviour. To date, invasive techniques like autoradiography or
lesions have been used to study it, limiting the exploration of whole brain networks. Recent advances
in fMRI for avian brains now open new windows to explore bird’s brain functions at the network level.
We developed an fMRI technique for awake, newly hatched chicks, capturing BOLD signal changes
during imprinting experiments. While early memory acquisition phases are understood, long-term
storage and retrieval remain unclear. Our findings identified potential long-term storage of imprinting
memories across a neural network, including the hippocampal formation, the medial striatum, the
arcopallium, and the prefrontal-like nidopallium caudolaterale. This paradigm opens up new avenues
for exploring the broader landscape of learning and memory in neonatal vertebrates, enhancing our
understanding of behaviour and brain networks.

Filial imprinting is a learningprocess bywhich the youngof someorganisms
can learn about a conspicuous object, usually the mother or siblings, by
simply being exposed to it for a short period of time soon after birth1. It owes
its great popularity to the work of Nobel-prize-winning ethologist Konrad
Lorenz2, but itwas originally describedbyDouglas Spalding3 in the offspring
of some nidifugous (precocial) bird species, such as chicks or ducklings
(see4). Visual imprinting has been mostly studied, though acoustic or
olfactory imprinting can be observed as well, the latter being prominent in
mammals5.

Although in principle visual imprinting can occur with any kind of
object, research has shown that the process is actually assisted by a set of
biological predispositions which guides an animal’s attention towards those
object features that are more likely to be observed in social partners—e.g.
preferences in domestic chicks include simple features such red colour
(which is prominently observed in the head region of conspecifics), or self-
propelledmotion (which is typical of living things), as well asmore complex
assembly of features such as face-like stimuli or biological motion in point-
light displays (review in refs. 4,6). Brain research has shown that biological
predispositions are associated with the activation of areas of the so-called
Social BehaviourNetwork, and in particular of the lateral septum formotion
stimuli and of the nucleus taenia (homologous of the mammalian medial
amygdala7) for face-like stimuli (review in ref. 6).

Interest in filial imprinting quickly spanned from behavioural biology
to psychological development and psychopathology, inspiring, for instance,
John Bowlby’s theory of attachment, which postulates a crucial role of the
mother-child bond for subsequent psychological development and, com-
plementarily, the psychiatric outcomes associated with early mother
deprivation (recent reviews in refs. 8,9).

In the 70’s filial imprinting served as a model for the neurobiological
investigation of memory. Gabriel Horn and colleagues (review in ref. 10)
identified an associative brain region involved in the formation of an
imprintingmemory, the intermediatemedialmesopallium(IMMaccording
to the new avian brain nomenclature; previously referred to as IMHV,
intermediate medial hyperstriatum ventrale11,12). IMM proved to be crucial
during the acquisition phase of the visual imprinting memory. More pre-
cisely, it was found that exposure to the imprinting object was associated
with changes in the left butnot in the right IMM13,14. Subsequent studieswith
auditory imprinting revealed that the imprinting-related area extended
ventrally into a medialmost nidopallial area, the nidopallium medial pars
medialis (NMm)15,16. Here we will use the label medial nidopallium/meso-
pallium (MNM) to jointly label themesopallial andnidopallial entities of the
imprinting area.

Experiments involving sequential lesions, first to one side of IMM and
subsequently to the other17,18, suggested that the store in the left IMM is only
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temporary, and the right IMM is implicated in transferring information
from the left IMM to another, unknown brain region dubbed S’, and that
this transfer appears to be complete within 6 h after the end of exposure19.
Thus, to cite GabrielHorn’s words 'We are still someways frombeing able to
visualize, through the microscope or by using brain imaging techniques, the
neural trace of (imprinting) memory'10. To overcome the technical limita-
tions, recent advancements in functional magnetic resonance imaging
(fMRI) turned it into a cornerstone neuroscientific technique. This pow-
erful, non-invasive procedure serves as an indirect measure of neuronal
activity throughout the entire brain, offering a comprehensive perspective at
the network level. It appears particularly well-suited to finally find the so-
called S’, being it a region or a neural network. To this end, we have
developed an awake fMRI platform to explore the imprinting network and
the long-term store of imprinting memories in newly hatched chicks.

We exposed (imprinted) chicks on either a preferred (red) or a non-
preferred (blue) colour. After exposure, awake chicks were tested with a
sequence alternating the two colours in the scanner. We could demonstrate
that chicks imprinted on red colour showed activity in pallial and subpallial
brain regions involvedwith storage andmemory retrieval, such as themedial
striatum, the arcopallium, the hippocampus, and the nidopallium caudola-
terale (a presumed avian equivalent ofmammalian prefrontal cortex). Chicks
imprinted on blue showed less activity in the same regions; however, during
the last 20min of scanningwhen presentedwith the red, these chicks showed
activity in the mesopallium and the Social Behaviour Network. The first
exposure to the colour red, a predisposed feature for social attachment, thus
started a process of secondary imprinting, activating a brain network known
to be involved in socially predisposed features at birth. We thus, first, estab-
lished a reliable platform to investigate the long-term imprinting memory.
Second, our resultsmight shed light on the so-called S’, the neural basis of the
long-term imprinting memory storage which was unknown up to now.

Results
The present study aimed to better understand the neural networks under-
lying the different learning stages of filial imprinting: memory acquisition,
long-term memory storage, and retrieval. To tackle these ambitious ques-
tions, we decided to establish a fully non-invasive awake fMRI protocol for
newborn chicks. Using the awake fMRI platform, we were able to capture
dynamic neural processes in real-time of imprinting memory at the whole
brain level, allowing us to observe and analyse the intricate interplay of brain
regions involved in filial imprinting memory without interfering with the
natural state of the subjects.

Establishment of a fully non-invasive and awake fMRI for
the chicks
To enable whole-brain fMRI acquisition in awake chicks, we developed a
fully non-invasive set-up to minimise head and body movements (Fig. 1).

Before fMRI scans, chicks were imprinted for two days on either a preferred
red or a non-preferred blue light ball20. Before scanning, chicks were habi-
tuated to the scanner noise using a playback of the magnet noise (Fig. 1a).
On the third day, after wrapping the animal in a paper tissue to avoid any
body-part movements (such as wings and legs), blocks of plasteline were
used to comfortably fixate the head, minimising movements and scanner’s
noise by covering their ears (Fig. 1b).

To record the spontaneous resting-state (to evaluate the stability and
reliability of the head fixation system) and task-based BOLD signals, a
single-shot multi-slice rapid acquisition with relaxation enhancement
(RARE) sequence was adopted from Behroozi et al. 21–23. Voxel-wise signal-
to-noise ratio (SNR) and temporal SNR (tSNR) were calculated over the
resting-state (rs-fMRI) and task-based fMRI (tb-fMRI) scans respectively.
The tSNR of the RARE sequence in each voxel was calculated after applying
motion correction and high-pass temporal filtering (cut-off at 120 s) to
remove any linear drift. Temporal SNR in the entire telencephalon ranged
from 50 to 100 (Supplementary Fig. 1a, b) for both tb- and rs-fMRI scans.
Furthermore, the result indicated highly correlated SNR and tSNR for both
rs- and tb-fMRI scans (Supplementary Fig. 1c, d).

In order to verify that adequate fixation was achieved during fMRI
scans, we used the realignment parameters and the results of the frame-wise
displacement (FD) to evaluate the amount of head motion (Supplementary
Fig. 2). Overall, the custom-made restrainer yielded a low level of head
movements. There were only 2.02% (218 volumes) and 1.08% (19 volumes)
of fMRI volumes with FD higher than 0.2mm (~40% of voxel size) over all
subjects in the task-based and resting-state experiments, respectively
(Supplementary Fig. 2A). The median of frame-wise displacement was
~0.03mm for both tb-fMRI and rs-fMRI experiments. However,most head
movements occurred in the y-direction (Supplementary Fig. 2b, c). The
respective violin plot information for translations in the y-direction is as
follow: tb-fMRI: max/min = 0.22/−0.31 andmedian ~0; and rs-fMRI: max/
min = 0.28/−0.30 and median ~0. The higher motion parameters in the
y-direction were most likely due to the design of the head restrainer, which
allowed movements in the dorsoventral direction to avoid blocking the
throat.

Distinct BOLD response to identify the acquisition and long-term
storage of imprinting memory
We recorded the whole brain BOLD signals from 17 head-restrained awake
chicks already imprinted to either a preferred colour, red (n = 9), or a non-
preferred colour, blue (n = 8). During fMRI scanning, animals were pre-
sented with both colours (Fig. 1c), which depending on the previous
imprinting training could represent either the imprinted or the control
colour. The two colours were presented in a block design manner and a
pseudo-random order (48 trials, 24 per condition, see Methods). For the
preferred colour group, the imprinting colour (Imp)was red and the control

Fig. 1 | Experimental setups and stimulation
sequence for awake chick fMRI. a Imprinting cage.
Newborn chicks were first exposed to a hollow
plastic ball with a flickering red/blue light at a fre-
quency of 5 Hz. b Custom-made restrainer and 7 T
fMRI system. Awake chicks were placed in an MR-
compatible tube. To immobilise non-invasively the
animals, a beak holder was used to control the beak
movements and blocks of plastelines were used to
cover the ears and reduce headmovements. To avoid
body-part movements, animals were wrapped in
paper tissue before fixating the head. Subsequently,
the animal’s body was taped to the restrainer. c A
sequence of the block design experiment paradigm.
Visual stimuli were presented in blocks of 16 s fol-
lowed by 24 s dark. During the ON blocks, the visual
stimulus (red/blue light) flickered at a frequency of
5 Hz. All parts of this figure were created by the
authors (M.B., E.L.).
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(Cont) was blue, while for the non-preferred colour group the imprinting
colour was blue and the control red. To identify the long-term storage of
imprinting memory, we first used the contrast of Imp >Cont, where
‘Imp >Cont’ indicates greater activity for the implicit condition (Imp)
compared to the control condition (Cont), by combining both groups in a
conventional generalised linearmodel (GLM) based statistical analysis. The
first-level results at the single-subject level were then entered into a second-
level analysis (random-effect modelling, Z = 2.3 and p < 0.05 family-wise
error (FWE)) to illustrate the activation clusters at different networks of
chick prosencephalon.

Before fMRI scans, chicks were exposed to the imprinting stimulus for
2 days, during which they learned the features of the imprinting object and
stored them as a long-term memory1. Therefore, we expected to find acti-
vation in regions involved in memory retrieval. Surprisingly,
RedImp+ BlueImp > BlueCont+ RedCont contrast showed no significantly
activated cluster in the chick brain. The activation patterns for both con-
trasts, RedImp+ BlueImp > baseline and BlueCont+ RedCont > baseline, were
highly similar (Fig. 2a). To get to the bottom of this interference, we
examined the interaction between the group factor and the Red vs. Blue
contrast by analysing the following contrasts: RedImp vs. BlueImp, BlueCont
vs. RedCont, RedImp vs. RedCont, and BlueImp vs. BlueCont. As illustrated in
Fig. 2b and c, robust BOLD activation patterns were found within the
telencephalon for the contrasts: RedImp > BlueImp (indicating greater activity
in RedImp than BlueImp) and BlueCont < RedCont (indicating less activity in
BlueCont than RedCont) contrasts. In addition, the RedImp vs. RedCont, and
BlueImp vs. BlueCont contrasts demonstrated no significant differences
between the different conditions, same colour serving as the imprinting or
control stimulus.

To comprehensively investigate the underlying mechanisms behind
this discrepancy, we conducted a meticulously designed behavioural
experiment aimed at controlling the influence of colour on the chick’s
preferred choice. As represented in Fig. 3, we foundno significant difference
in the colour preference between the two groups (two-tailed independent
sample t-test: t(22) = 1.601, p = 0.124, d = 0.654; mean ± se Red group:
0.718 ± 0.068; Blue group: 0.558 ± 0.072). A significant preference for red
was detected in both groups together (two-tailed independent sample t-test:
t(23) = 2.683, p = 0.013, d = 0.548; 0.638 ± 0.051). These results confirmed
the presence of no significant differences between the Red and the Blue
imprinted groups with regard to the preference for the red stimulus24–27.
These results might support the idea that Blue imprinted chicks exposed to
the preferred colour red immediately started a process of secondary
imprinting toward it inside the scanner.

To this end, we decided to analyse both groups independently to
determine the brain activity pattern during the acquisition and the recall
phase of a long-termmemory of imprinting. While Imp >Cont contrast in
the red group showed robust activation clusters in many telencephalic as
well as diencephalic regions, in the blue group showed no significant acti-
vation clusters.

As shown in Figs. 2, 3, Supplementary Figs. 3, and 4, this is due to
chicks’ preference for red over blue (as demonstrated through the beha-
vioural experiment), therefore we used the Imp >Cont contrast (blue > red
colour) during the first 10min and Cont > Imp contrast (red > blue colour)
during the last 20min of scanning, to investigate the memory retrieval and
memory formation phase of a new imprinting process28 elicited by the
presence of the preferred colour red. The results of the first 10min scans
indicate weak activity in the intermediate medial mesopallium (IMM), the
hippocampus (Hp), the medial Striatum (MSt), the nidopallium caudola-
terale (NCL) and the n. Taeniae of the Amygdala (TnA) when chicks
imprinted with blue colour were initially presented with blue (n = 8, Z = 1.9
and p < 0.05 FEW corrected at the cluster level). However, as illustrated in
Fig. 4, the voxel-based group analysis during the last 20min scans showed
robust BOLD responses in different visual prosencephalic regions: the n.
geniculatus lateralis pars dorsalis (GLd, which receives direct input from the
retina29), the right intermediate hyperpalliumapicale (IHA,which primarily
receives visual thalamic input30), the right hyperpallium intercalatum (HI)

and right hyperpallium densocellulare (HD), and bilaterally the hyperpal-
lium apicale (HA, together with HD associative hubs of the thalamofugal
pathway30,31) of the thalamofugal pathway, bilaterally the n. rotundus (Rot,
which is the primary thalamic input region of the tectofugal pathway). Also,
parts of the auditory systemwere activated: bilaterally the ventromedial part
of the Field-L complex and the right n. ovoidalis (OV), a thalamic auditory
nucleus receiving direct input from the avian homologue of the inferior
colliculus (torus semicircularis32) that projects to Field-L. We detected sig-
nificant activation clusters in the associative pallial regions nidopallium
medial pars medialis (NMm) and bilaterally in the caudal intermediate
medial mesopallium (IMM). Within the two interconnected Social Beha-
viour Network and Mesolimbic Reward System, we detected a significant
BOLD increase rightward in the bed nucleus of the stria terminalis (BNST),
the n. accumbens (Ac) and the medial striatum (MSt), bilaterally in the
septum and leftward in the posterior pallial amygdala (PoA) and the ven-
tromedial part of hippocampus (Hp-VM).

As illustrated in Fig. 5 and Supplementary Fig. 5, the voxel-based group
analysis during the imprinting memory retrieval phase in the red group
showed robust BOLD responses in different visual prosencephalic regions:
the right GLd, bilaterally in IHA, HI, HD and HA. We found also a sig-
nificant BOLD rightward increase in the part of the auditory system, OV.
Furthermore, we detected a significant increase in the BOLD signal in the
associative right MNM (IMM+NMm) and nidopallium caudolaterale
(NCL) and in left portions of the caudal mesopallium dorsale (MD) and
nidopallium caudocentrale (NCC; all interconnected regions33–35). Within
the two interconnected Social Behaviour Network andMesolimbic Reward
System, we detected significant bilateral activation in the ventromedial part
of the hippocampus (Hp-VM), while rightward activation clusters in the
bed nucleus of the stria terminalis (BNST), in the nucleus accumbens (Ac),
in the medial striatum (MSt), in the medial and dorsal arcopallium
(respectively AM and AD), in the posterior pallial amygdala (PoA) and in
the preoptic, anterior and ventromedial areas of the hypothalamus
(respectively POA, AH, and VMH).

Discussion
Imprinting, awell-known formof early learning, has beenwidely used in the
70’s as amodel to study the neurobiology of memory formation (reviews in
refs. 10,36). Evidence for a crucial role played by the intermediate medial
mesopallium (IMM) and NMm (jointly labelled as MNM) during the
acquisition of imprinting memory was obtained. Further studies showed
that the store in the IMM is only temporary and that a transfer of infor-
mation to another, unknown brain region, dubbed S’37, occurs after
approximately 6 h. These studies were conducted with either autoradio-
graphic or lesion techniques andwere unable to discover the full imprinting
network38. To overcome the limitations of traditional methods, fMRI
represents a significant leap forward in our ability to investigate and com-
prehend brain activities. By providing an indirect measurement, BOLD, of
the whole brain in various circumstances, this cutting-edge technology
offers scientistswith a powerful tool for unravelling complexbrain networks
and sheds light on their roles in diverse cognitive processes, especially
memory.

fMRI has been used in several studies to investigate the connection
between connectome variations and memory. A recent study in songbirds
highlights fMRI’s role in tracking song memory development in zebra
finch’s post-tutorial sessions39. The study revealedpermanentneural activity
changes in auditory perception and song learning, highlighting early sen-
sory experiences.Gazzaley andNobre40 explored the neural basis ofworking
memory encoding andmaintenanceusing fMRI.Rahmet al.41 characterized
the neural basis of visual working memory recognition using fMRI by
varying recognition needs and similarity between probe items andmemory
contents. Yang et al. 42 proposed an enhanced connectome-based predictive
modelling approach, which showed strong applicability across different
cognitive processes and could predict working memory performance in
healthy individuals. These findings underscore the potential of fMRI in
understanding brain processes that underpin cognitive abilities.
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Fig. 2 | Colour preference of different groups. a GLM analysis was used to
demonstrate activated networks during imprinting and control trials by examining
RedImp+ BlueImp > baseline (red map) and BlueCont+ RedCont > baseline (blue
map) contrasts. The colourmaps show the activation significance of group-averaged
data from 17 chicks (9 red groups+ 8 blue groups) in the axial view (group analysis
using a mixed model FLAME 1+ 2 method, Z = 2.3, and p < 0.05 FEW corrected at
the cluster level). b the contrast map shows the significant increase of BOLD signal

during Red colour as imprinting stimulus compared to Blue colour as imprinting
stimulus (RedImp > BlueImp contrast, 9 chicks for red group and 8 chicks for blue
group). cActivation map showing the strong BOLD response during the Red colour
as control stimulus for the blue group compared to the Blue colour as control
stimulus for red group (BlueCont < RedCont, 9 chicks for red group and 8 chicks for
blue group). The functional maps were superimposed on the high-resolution ana-
tomical data at the different levels of an ex vivo chick brain (in grayscale).
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Here we established a new non-invasive fMRI protocol to study awake
brain activity in newly hatched domestic chicks in order to discover the
neural pathways of imprinting and the identity of S’. After two days of
imprinting training, with either a preferred (red) or a non-preferred (blue)
colour, chickswere exposed to a sequence of the two stimulus colours inside
the scanner. In Red imprinted chicks we found a network of brain regions
probably associatedwith the long-termencoding and retrieval of imprinting
memory. Interestingly, Blue imprinted chicks did not show such strong
brain activity in these brain regions. To further explore the difference
between the two groups, we conducted separate analyses for the initial
10min and the final 20min of the scanning for the Blue imprinted chicks.
The analysis of the first 10min unveiled that blue imprinted chicks when
presented with blue did show an activation (albeit weaker) of the very same
brain regions observed when red imprinted chicks were presented with red
(Supplementary Fig. 3). Interestingly, during the last 20minutes of scanning
blue imprinted chicks showed a progressively increasing activity when
presented with red in brain regions that we know from previous literature
are associatedwith the very first phases of imprinting learning1,10–12,15–18.We
interpret these findings as follows: when the red colour is available, a new
imprinting process begins toward it, as red is highly preferred by chicks
(Fig. 4). Such a phenomenon could be (i) a secondary imprinting process
starting or (ii) the start of the first imprinting on red, given that the initial
imprinting with blue was notably weaker or absent. In the following sec-
tions, we will refer to this as the acquisition phase of new imprinting.

Visual information reaches the pallium both via the tecto- and the
thalamofugal visual pathways. We observed a partial involvement of the
nucleus rotundus (Rot), the thalamic link of the tectofugal pathway during
acquisition (Fig. 6a). A rotundal involvement had already been reported in
imprinted chicks43 and together with the present results, it could suggests a
minor tectofugal role during the early stages of imprinting learning. In
contrast, the thalamofugal visual system seems to play a crucial role in
processing imprinting information (as also reviewed in ref. 44). This
pathway consists of the retinorecipient GLd33 that projects to the interstitial
nucleus of the hyperpallium apicale (IHA) of the visual Wulst, from where
secondary projections reach the three pseudo-layers of the Wulst hyper-
pallium densocellulare (HD), hyperpallium intercalatum (HI), and hyper-
pallium apicale (HA)45.We discovered both duringmemory formation and
retrieval (Fig. 6b) significant activity patterns of all these thalamofugal

components. Indeed, HD of dark-reared chicks exhibits topographically
organised responses for red and blue objects46. After imprinting on either
one of the two colours, such organisation changes along the rostro-caudal
axis showing imprinting-related plasticity already in the Wulst.

Previous studies showed that Wulst lesions lead to anterograde
amnesiaof visual imprintingmemory46. This possibly results fromthe lossof
visual projections from HD to IMM47,48, the associative medial pallial area
that is crucial for the acquisition of imprinting memory10. IMM projects
back to HA, establishing a loop33. IMM, the ventrally located NMmand the
nidopallium caudolaterale (NCL) have been shown to be involved during
visual as well as auditory filial imprinting15,49. Here we report a significant
brain activation in IMM,NMm, andNCLduringmemory retrieval and, to a
much lesser extent, in IMM and NMm during memory formation. Indeed,
NMm and NCL undergo long-lasting synaptic changes after multimodal
(visuo-auditory) imprinting training10,49,50. Imprinting training also impacts
cell proliferation in NMm and NCL, but not in IMM51. Thus, these three
areas play important but differential roles in multimodal filial imprinting
learning and the subsequent formation of long-term memory. Note that in
the present study, chicks were also exposed to the noise produced by the
scanner. Thus, NMm and NCL on the one and the auditory n. ovoidalis
(OV)—Field-L pathway on the other side, could conceivably constitute the
neural basis for the acoustic component of acquiring (blue group) or
retrieving imprinting memory (red group).

However, the interconnected higher associative regions, NMm and
NCL do not only play a role for long-term memory-related
mechanisms22,50,52,53. NMm is also involved in sensorimotor learning and
sequential behaviour54, while NCL, largely accepted as a prefrontal-like
field35, is involved in working memory55,56, executive control57,58 and in
merging multi-sensory information in long-term memory engrams59. This
evidence together with the present findings further supports the involve-
ment of these regions in the long-term storage and flexible retrieval of a
multimodal imprinting memory trace.

Themotor output component ofNMmandNCL is establishedby their
projections to arcopallium and medial striatum (MSt)52,60–63. Possibly, the
initially partially processed imprinting trace is thereby transferred into a
striatum-dependent response strategy. As a result, striatal S-R associations
are formed and once acquired, drive animal’s imprinting behaviour63. This
also has been shown for passive avoidance learning. Here, the mnemonic
nature of MSt (previously lobus paraolfactorius12) goes hand in hand with
that of IMM36,64,65, with increased density of synapses and dendritic spines
being detectable some days after training in MSt, but not in IMM65–67.
Additionally, after imprinting training, glutamate receptor binding affinity
increases both inMSt and arcopallium68–70, while, pre-imprinting arcopallial
lesions impair memory acquisition71.

We found enhanced brain activity in themostmedial part ofMSt both
during acquisition and retrieval of imprintingmemory, while for the dorsal
and medial portions of arcopallium this was only observed for retrieval.
These portions of MSt and arcopallium are enriched in the limbic system-
associated membrane protein (LAMP)72. We also found a strong meso-
limbic involvement in imprintingmemory in the two interconnected Social
Behaviour Network and Mesolimbic Reward System73–75. Here septum was
involved only during memory formation. Arcopallium, preoptic area,
anterior and ventromedial hypothalamus (POA, AH, VMH)were involved
only during memory retrieval. In contrast, Hp, MSt, bed n. of the stria
terminalis (BNST), n. accumbens (Ac) andposterior pallial amygdala (PoA)
were involved during both memory formation and retrieval. While invol-
vement of these systems in social predispositions associatedwith imprinting
had already been observed6,76,77, this is the first evidence for their involve-
ment during imprinting. Such involvement could represent the motiva-
tional component linked to the association. Indeed, in the context of filial
imprinting, emotional-motivational engagement must be particularly pro-
nounced at different stages of the learning process. The septum seems to be
preferentially involved during the first stages of imprinting and probably
driving the chick’s attention toward salient predisposed moving stimuli.
Previous studies also revealed septal involvement during the first exposure

Fig. 3 | Colour preference after imprinting. The boxplot in grey represents the
colour preference in both red and blue imprinted groups together (n= 12 per
group). The asterisk represents a significant difference from chance (dotted line). To
best represent the data, we provided each subject preference (red points are Red
imprinted chicks and blue points are Blue imprinted chicks) and a violin plot for
each imprinting group (blue and red respectively) representing the group dis-
tribution. No significant difference was detected between the two groups in the
colour preference. The data for individual chicks are available in Supplementary
Table 1.
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to a red object moving with abrupt changes of speed or an alive
conspecific76,77. Although BNST, Ac, MSt, and PoA seem to participate in
both imprinting memory formation and retrieval, we found greater activity
in the red group. Such enhanced activity may suggest a stronger emotional-
motivational component after memory consolidation of the imprinting
engram.

The HD of the Wulst has bidirectional connections with PoA and
Hp78,79.We found a hippocampal (Hp) involvement both during imprinting
memory formation and retrieval. The hippocampal formation is known for
its role in memory in birds and mammals80. However, c-fos immunor-
eactivity in chicks revealed also a social role of Hp. The dorso- and ven-
tromedial portions are involved in individual recognition in chicks81. The

same portions here were found to be involved in imprinting memory,
strengthening a regional specialisation of hippocampus dedicated to social
memory functions. Indeed, Hp projects ipsi- and contralaterally to IMM66

and is involved infilial imprinting68.We found a leftHp involvement during
filial imprinting memory formation (blue group) and a bilateral one during
memory retrieval (red group).

Interestingly, the brain activity pattern was predominantly right
lateralised. Among the exceptions was a left Hp involvement during
imprintingmemory formation (blue group), and a bilateralHp involvement
duringmemory retrieval (red group). Lateralisation is a common feature in
the avianbrain, especially at different stagesofmemory formation82–85. Right
lateralisation during memory formation has been reported for passive
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avoidance learning86. Instead, for imprinting learning, time-shifts have been
observed in the lateralisation pattern of IMM. The left IMM is involved at
first in learning the features of the imprinting object, while the right IMM
dominates duringmemory consolidation and the subsequent establishment
of the long-term storage S’18,87. A similar pattern of lateralisation has been
proposed in the hemispheric encoding/retrieval asymmetrymodel (HERA)
inhumans,where the left hemisphere plays adominant role duringmemory
encoding and the right during retrieval84. Such evidence together leads to the
hypothesis of a dual memory system for imprinting, in which different
processes—acquisition and consolidation—take place in different

hemispheres, with prominent right lateralisation for consolidation
processes18. Indeed, during memory consolidation, a glutamate injection
into the right IMM disrupts imprinting memory, but it does not when
injected into the left hemisphere88. Our results may add a novel view on the
idea of the dualmemory system: while the visual thalamofugal nucleus GLd
was bilaterally activated during acquisition, only the right side was active
during retrieval. It is conceivable that right hemispheric memory con-
solidation increased top-down projections onto right-sided sensory tha-
lamic nuclei in order to focus attention on learned object properties89. This
then could activate and synchronize right hemispheric pallial areas
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according to attentional allocation, thereby inducing a right hemispheric
superiority in imprinting memory retrieval90.

Ourfindings provide a completely non-invasive paradigm for studying
neural mechanisms at birth in newly hatched chicks. Additionally, our data
suggests a prosencephalic neural network that, among others, involves the
Social Behaviour Network, the Mesolimbic Reward System, and the medial
meso-/nidopallium for long-term storage and retrieval of filial imprinting
memory. As to be expected, the networks that could be involved inmemory
formation and retrieval partially overlapped.However, network activitywas
more pronounced and further involved arcopallium and NCL in the
retrieval condition. Thus, consolidation of imprinting memory seems to
result in a strengthening and expansion of the neural system that holds the
engram in distributed manner. Within this perspective, the long-searched
site for imprinting memory dubbed as S’ by Gabriel Horn91 is possibly this
whole network within which the “prefrontal” NCL could be a central hub.

Methods
Subjects
All procedures here presented followed all the applicable European Union
and Italian laws, and guidelines for animals’ care anduse andwere approved
by the Ethical Committee of the University of Trento OPBA and by the
ItalianHealthMinistry (permit number 738/2019). Fifty-three femaleswere
used in the present study. Twenty-nine for the MRI procedure: red group
(n = 10) imprinted to red colour, blue group (n = 10) imprinted to blue
colour, and resting-state group (n = 9). After checking the motion para-
meters in the fMRI scans, we excluded data from three animals, resulting in
n = 9 for the redgroupandn = 8 for theblue group (see below).Twenty-four
for the behavioural experiment: red group (n = 12) imprinted to the red
colour, blue group (n = 12) imprinted to the blue colour. Each chick
underwent the experimental procedure only once. We have complied with
all relevant ethical regulations for animal use.

A local commercial hatchery (Azienda Agricola Crescenti, Brescia,
Italy) provided fertilised eggs of the Aviagen Ross 308 strain (Gallus gallus

domesticus). Eggs were incubated and hatched in the laboratory under
controlled temperature (37.7 °C) and humidity (60%) in darkness using
FIEMMG140/200 Rural LCD EVO incubators. Soon after hatching, chicks
were sexed by feather dimorphism, with a black cap on the head in order to
prevent any visual stimulation. Twenty-six females were used in the present
study. Females were used because they are known to exhibit stronger filial
attachment with the imprinting object92–94. Each chick underwent the
experimental procedure only once. At the end of the experimental proce-
dure, on post-hatching day 3, chicks were caged in groups with water and
food ad libitum, at constant temperature (32.3 °C) and with a 12:12 day-
night light cycle until they were donated to local farmers.

Imprinting
On the day of hatching, chicks were caged individually at a constant tem-
perature of 32.3 °C with water and food. In each cage (28 × 40 × 32 cm) the
imprinting stimulus, a hollow plastic ball (diameter 3.5 cm), was suspended
in the middle (7 cm from the floor, Fig. 1a). Two optical fibres (diameter of
2mm) inserted in the ball were flickering at 5 Hz. Chicks prefer to imprint
on a flickering than on a stationary light95. For one group of chicks, the ball
was flickering with red light (N = 9, dominant wavelength = 642 nm,
intensity = 16.45 cd/m2,), for the other group with blue light (N = 8,
dominant wavelength = 465 nm, intensity = 16.45 cd/m2). Being the only
light provided in the environment, the established setup by Behroozi et al. 22

and a custom-written MATLAB code was used to automatically switch on
and off the light, following a day-night cycle 12:12 (see ref. 96). During the
daytime, to habituate the subjects to the noise of the scanner, a recording of
the sound was provided twice per day, for a total amount of 5 h per day, by
two loudspeakers (Logitech) placed outside the cages.

Acquisition and pre-processing of fMRI data
All MRI experiments were recorded using a horizontal-bore small animal
MRI scanner (7.0 T Bruker BioSpin, Ettlingen, Germany) equipped with a
BGA-9gradient set (380mT/m,max. linear slew rate 3420 T/m/s).A72mm

Imprinting Memory Acquisition

Imprinting Memory Retrieval

Associative

Social Behavior & Mesolimbic

Visual Auditory

No Activation

L R R L P A

R L P

a)

Hp

Hp
HD HI HA

Rot
GLd

Rot
GLd

HA

Rot GLd
FL

OV

FL

OV

IHA

Rot

GLd

OV

FL

BNST

BNST

BNST

AD

AD
Ac

Ac

Ac

AM AM

H
PoA

PoA

MSt

MSt

S

S

S
MSt

POA

NCL

NMm

NMm

NMm
IMM

IMM

IMM

Hp

HD HI HA

Rot
GLd OV

IHA

BNST

AD
Ac

AM

H

MSt

POA

NCL

MD

NMm
IMM

NCC

PoA

H NCC

MD

PoA

NCL

HI
HD

IHA

L R

b)

Hp

HA
HI

HD

RotGLd

OV

BNST

IHA

AD

Ac

AM
H

PoA
MSt

NCL

MD

NMm
IMM

NCC

AD

NCL

HI
HD

IHA

POA

HI HD
IHA

NCC

Hp
MD

A
Rot

GLd

OV BNST

AD
AcAM

H PoA

MSt

POA

HA

HD
HI

IHA

NCL
NMm

IMM

Hp

NCL

AD AM

NCC
MD

HA

HD
HI

IHA

AM AD

HI
HD

IHA

NCC
MD

Fig. 6 | Schematic depiction of the activatedprosencephalic areas during different
phases of imprinting memory. a Network activated during imprinting memory
acquisition is represented in colourful circles. b Network activated during

imprinting memory retrieval is represented in colourful circles. The grey circles
represent no activation. The corresponding abbreviations of ROIs are listed in the
Supplementary Table 2.

https://doi.org/10.1038/s42003-024-06991-z Article

Communications Biology |          (2024) 7:1326 8

www.nature.com/commsbio


transmit birdcage resonator was used for radio-frequency transmission.
To reduce the motion artefacts resulting from body parts’ movements, a
single-loop 20mmsurface coil was placed around the chicks’head for signal
reception.

Localiser. At the beginning of each scanning session, a set of scout
images (coronal, horizontal, and sagittal scans) were recorded as locali-
sers to identify the position and orientation of the chick’s brain inside the
MRI machine. The scout images were acquired using a multi-slice rapid
acquisition (RARE) sequence with the following parameters: repetition
time (TR) = 3000 ms, effective echo time (TEeff) = 41.2 ms, RARE fac-
tor = 32, N_average = 2, acquisition matrix = 128 × 128, the field of view
(FoV) = 20 × 20 mm, spatial resolution = 0.156 × 0.156 mm2, slice
thickness = 1 mm, number of slices = 8, slice orientation = coronal/hor-
izontal/sagittal, with a total scan time of 18 s. This information has been
used to position 9 coronal slices in a way (~40° regarding coronal
direction) to cover the entire telencephalon to record the fMRI time
series.

fMRI (task). The blood-oxygen-level-dependent (BOLD) time series
were recorded using a single-shot multi-slice RARE sequence adopted
from Behroozi et al. 22,97 with the following parameters: TR/TEeff = 4000/
51.04 ms, RARE factor = 42, acquisition matrix = 64 × 64,
FoV = 30 × 30mm2, 9 coronal slices no gap between slices, slice thickness
= 1 mm, slice order = interleaved. Since the eyes’ size is comparable to
brain’s one, two saturation slices weremanually positioned on the eyes to
saturate the possible eye movement artefacts, which can corrupt the
BOLD signal. A total of 540 volumes were recorded for each animal.

fMRI (Rest). Whole-brain resting-state fMRI data (200 volumes) of nine
chicks were recorded using a single-shot RARE sequence with the same
parameter as the task fMRI sequence.

StructuralMRI. High-resolution anatomical images were acquired using
a RARE sequence with following parameters: TR/TEeff = 6000/42.04 ms,
RARE factor = 16, N_Average = 4, acquisition matrix = 160 × 160,
FoV = 30 × 30mm2, 39 coronal slices with no gap between slices, slice
thickness = 0.33 mm, total scan time = 4min.

Experimental task. Inside the fMRI machine, chicks were presented
with two different stimulus types, imprinted (red/blue) and control
colour (blue/red) with the same wavelength and intensity as the training
phase. The light stimuli were generated using the established setup by
Behroozi et al. 22. Stimuli were presented in a pseudo-random order in an
ON/OFF block design experiment (maximum two trials in a row were of
the same colour). The duration of ON blocks was 16 s. ON blocks were
interleaved with a rest period of 24 s (OFF blocks, inter-trial interval
(ITI)). In total, 48 trials were recorded during an fMRI session from each
animal (24 trials per stimulus).

Apparatus. A critical issue during awake fMRI scanning of animals is
motion artefacts. Therefore, immobilisation of the animal’s head is
essential to acquire an accurate fMRI time series. To this end, awake
chicks were immobilised in a nonmagnetic custom-made restrainer,
composed of a beak holder, blocks of plasticine around the head to
immobilise it in a comfortableway, and a roundRF coil on top of the head
(Fig. 1b). Before the head fixation, the animal’s body was wrapped in
paper tissue to prevent the other body parts’ movement (such as wings
and feet) to avoid any possiblemotion artefacts. The animal’s body inside
the paper tissue was tapped to the main body of the restrainer using a
piece of medical tape.

fMRI data processing
All BOLD time series were pre-processed using the FMRIB Software Library
(FSL, version 6.0.4, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), the Analysis of

Functional NeuroImages (AFNI, version 20.0.09 https://afni.nimh.nih.gov/),
and Advanced Normalization Tools (ANTs, http://stnava.github.io/ANTs/)
software. We performed the following pre-processing steps for each run: (i)
converting dicom files to nifti format (using dcm2niix function); (ii)
upscaling the voxel size by a factor of 10 (using AFNI’s 3drefit); (iii) dis-
carding the first 5 volumes to ensure longitudinal magnetization reached
steady state; (iv) motion correction using MCFLIRT (which aligns each
volume to the middle volume of each run); (v) slice time correction to
account for the long whole-brain acquisition time (4000ms); interleaved
acquisitions); (vi) despiking using 3dDespike algorithm in AFNI; (vii)
removing non-brain tissue (using BET and manual cleaning); (viii) spatial
smoothing with FWHM=8mm (using FSL’s SUSAN, after upscaling voxel
size by factor of 10); (ix) global intensity normalization with grand mean =
10,000 across scanning sessions for group analysis; (x) high-pass temporal
filtering to remove slow drifts (cut-off at 100 s); (xi) anatomical brain
extraction (using BET function and cleaned manually); (xii) registration of
the functional data to the high-resolution structural images using affine
linear registration (FLIRT function, six degrees of freedom). For spatial
normalization, a population-based template was constructed using
antsMultivariateTemplateConstruction.sh script (ANTs). FMRIB’s Non-
linear Image Registration Tool (FNRIT)98 was used to spatially normalize the
single subject anatomical images to the population-based template as a
standard space. The head motion of animals was quantified using framewise
displacement (FD)99. Three animals’ data were excluded due to the excessive
head motion (over 20% of volumes were contaminated with FD> 0.2mm,
one from the red group and 2 from the blue group). For the remaining
animals, the detected motion outliers were modelled as confound regressors
during the general linear model (GLM) analysis to reduce the impact of head
motion.

General linear model (GLM) analysis
Whole-brain statistical analysis was performed using the FEAT (FMRI
Expert Analysis Tool) to assess stimulus-evoked activation patterns. Single-
subject GLM analysis was carried out to convolve the established double-
gamma avian hemodynamic response function in pigeon brain by Behroozi
et al. 22 (the closest brain in the structural organization to the chick brain) to
the explanatory variables (on/off stimulation). In the first GLM, we incor-
porated the complete fMRI timeseries using the following two explanatory
variables (EVs) and their temporal derivatives: (i) imprinting trials (indi-
cated by red/blue, 24 trials) and (ii) control trials (indicated by blue/red, 24
trials). In the second GLM, we employed three EVs and their temporal
derivatives: (i) imprinting trials (last 16 trials); (ii) control trials (last 16
trials); (iii) junk trials (the first 16 trials comprising 8 imprinting and 8
control trials, were used as habituation period to the real magnet environ-
ment). In addition, six estimated head motion parameters (three transla-
tions and three rotations) and outlier volumes detected based on the FD
analysis were modelled as confound EVs to remove the residual motion
artefacts.

Visualization
To visualize the results, we took advantage of the high-resolution ana-
tomical image acquired for another study. Briefly, five post-mortem chick
brains were scanned using a fast-low angle shot (FLASH) sequence with
following parameters: TR/TE = 50/4ms, N_average = 6, acquisition
matrix = 400 × 400 × 500, voxels size = 0.05 × 0.05 × 0.05mm3, total scan
time = 19 h 48min. The population-based template was co-registered
nonlinearly (using FNIRT) to the high-resolution anatomical image of
the chick brain. The contrasts of interest, eventually, were non-linearly
warped to the high-resolution anatomical image. MANGO software
(http://ric.uthscsa.edu/mango/mango.html, version 4.1) was used for 3D
visualization of the activation patterns. Surf Ice software (https://www.
nitrc.org/projects/surfice/, version v1.0.20201102 64 bit x86-64 Win-
dows) was used for surface rendering the chick brains with overlays to
illustrate activated networks during imprinting acquisition and retrieval
memory.
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Behavioural experiment
Similar to the imprinting procedure employed for the MRI experiment,
chicks were individually caged on the day of hatching with the imprinting
object until day 3. TheRed imprinted groupwas exposed for two days to the
red flickering light (N = 12), while the Blue imprinted group to the blue
flickering light (N = 12).

On day 3, all chicks were individually exposed to the pseudo-random
sequence of red and blue colours that were employed for the stimulation
inside the scanner (for details see section Acquisition and Pre-processing of
fMRI data—Experimental task). Each chick saw 24 times its imprinting
colour (red/blue) and 24 times the control colour (red/blue).

After the exposure, each chick was tested individually inside a running
wheel to evaluate its colour preference.The test in the runningwheel lasted a
total of 10min. Each colourwaspresented for 5min.The sequenceof colour
presentation was counterbalanced between subjects.

The dependent variable measured was the distance (cm) covered by
each subject toward the red and the blue. To estimate chicks’ colour pre-
ferences, we calculated an index using the formula:

Colour preference ¼ cm toward red
cm toward red þ cm toward blue

This indexcould rangebetween0 (absolutepreference for theblue)and
1 (absolute preference for the red), whereas 0.5 represented the absence of
preference between the two colours.

Statistics and reproducibility
To perform group inference in fMRI experiments, subject-level parameter
estimates were taken into the second-level analysis using the mixed-effect
model (FLAME1+ 2) to produce group-level estimates of each condition.
FLAME1+ 2 cluster-basedapproachhas beenused to threshold the group-
level statistical maps for contrasts of interest with a cluster-defining voxel
threshold of p < 0.001 (Z > 3.1) for red group and p < 0.01 (Z > 2.3) for blue
group and entire timeseries analysis and Family Error Wise (FEW) cluster
significance threshold of p = 0.05.

To estimate differences between the two imprinting groups in the
colour preference experiment, we employed a two-tailed independent
samples t-test. To estimate colour preference, we employed one-sample
two-tailed t-test against chance (0.5).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All fMRI data for the chick imprinting and resting-state fMRI are available
at (https://data.mendeley.com/datasets/w6cwvmbxwr/1)100. All data needed
to evaluate the conclusions in the paper are present in the paper and/or the
SupplementaryMaterials. The source data underlying Supplementary Fig. 2
is provided in Supplementary Data 1.

Code availability
FSL software (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, version 6.0.4) and
MATLAB (2020b, MathWorks, USA) were used to process fMRI and
behavioural data, respectively. Related processing codes can be found at
https://github.com/mehdibehroozi/Imprinting-fMRI.
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